

Analyse des données aéronautiques pour la réduction de la consommation de carburant

Baptiste Gregorutti, Head of Data Science

25 septembre 2020

- ✤ Société basée à Paris
- ✤ Fondée en 2010 par d'anciens enquêteurs du BEA

Solutions logicielles

FLIGHT SCANNER Safety behind your data

Safety & Compliance Management Software

Flight « Big Data » Analytics for operational Risk Management

Trajectory Optimization through Big Data analytics

RADAR data analysis for airport management Safety and Efficiency

OPTIFLIGHT In-flight guidance

OPTI FLIGHT In-flight guidance HELPS PILOTS SAVE IN ALL FLIGHT PHASES

Flight data

- ✤ From the Quick Access Recorders
- ✤ Up to 1000 parameters per second
- ✤ Samping from 1 Hz to 8 Hz
- ✤ For instance

- ✤ State of the aircraft: speeds, altitudes, accelerations, fuel quantity
- Pilot parameters: engine thrust, surface control position, brakes
- ✤ Geolocation: latitude, longitude, heading

OPTI CLIMB - CUSTOMISED CLIMB SPEEDS

Ś

Opportunity

Climb = 30% of total fuel for medium haul flights.

Challenge

Most complex phase with many parameters changing at the same time (pitch, winds, temperatures, altitude, weight...).

All instructions to be entered in the FMS CLB page during cockpit preparation → Enter SPD REST241 / FL120 → Enter TGT SPD300 / 0.76

POPTI CLIMB

5-6% savings on climb fuel

Solution

Customized speed changes at different altitudes for each climb.

OPTI CLIMB - OPTIMAL CONTROL PROBLEM

Problem: *T*, *D*, *L* are unknown!

Problem: *T*, *D*, *L* are unknown!

Assume that

 $T \propto f_T(M)$ $D \propto f_D(M, \alpha) \longrightarrow \text{Solution: regression problems}$ $L \propto f_L(M, \alpha)$

i.e. the forces dépend only on the control variables

Problem: T, D, L are unknown and not recorded!

Assume that

 $T \propto f_T(M)$ $D \propto f_D(M, \alpha)$ $L \propto f_L(M, \alpha)$

i.e. the forces dépend only on the control variables

Problem: T, D, L are unknown and not recorded!

Assume that

 $T \propto f_T(M)$ $D \propto f_D(M, \alpha)$ and $L \propto f_L(M, \alpha)$

 $\begin{pmatrix} T \\ D \\ L \end{pmatrix} \approx \begin{pmatrix} Y_T \\ Y_D \\ Y_L \end{pmatrix} = \varphi(\text{data})$

i.e. the forces dépend only on the control variables

i.e. we can approximate the forces using the data

Problem: T, D, L are unknown and not recorded!

Assume that

 $T \propto f_T(M)$ $D \propto f_D(M, \alpha)$ and $L \propto f_L(M, \alpha)$

i.e. the forces dépend only on the control variables

 $\begin{cases} n = V \sin\gamma \\ \dot{V} = \frac{T \cos \alpha - D - mg \sin \gamma}{m} \\ \dot{\gamma} = \frac{T \sin \alpha + L - mg \cos \gamma}{mV} \\ \dot{m} = -C_{sp}T \\ \begin{pmatrix} T \\ D \\ L \end{pmatrix} \approx \begin{pmatrix} Y_T \\ Y_D \\ Y_L \end{pmatrix} = \varphi(\text{data}) \end{cases}$

 $V\sin\gamma$

i.e. we can approximate the forces using the data

In summary: three regression models

$$\begin{cases} Y_T = f_T(X) + \varepsilon \\ Y_D = f_D(X) + \varepsilon \\ Y_L = f_L(X) + \varepsilon \end{cases}$$

Source: PERF-AI CleanSky Project, in collaboration with Florent Dewez Benjamin Guedj and Vincent Vandewalle

OPTI DIRECT - SHORTCUT OPPORTUNITIES

Opportunity

Pilots can request and obtain clearance from ATC for direct routes that will save time and/or fuel.

Challenge

- Unclear which tracks have been flown before and have chances of being granted

- Weather conditions may affect time & fuel savings

Solution

Recommend shortcuts based on historical tracks flown, with an indication of fuel & time savings.

DOptiDirect

Request direct routing clearance to ATC for:

- · AKUTI GIPNO : save 126kg / 2min 30sec (flown more than 56 times)
- UKEMA ODILO : save 59kg / 1min 30sec (flown more than 851 times)
- CVN UTOMA : save 32kg / 1min (flown more than 22 times)

All pilots benefit from historical shortcuts

OPTI CLIMB POTENTIAL YEARLY SAVINGS

Potential annual benefit across a mixed fleet of **20 narrowbody aircraft**

- **\$ 1,134,000 / Year** of fuel savings

- 5,100 metric tons / Year of reduction in CO₂ emissions

75kg average savings per climb
4 flights /aircraft/ day
75% adherence rate
average fuel cost of 0.70\$ per kg

OPTI FLIGHT

255 tons CO₂/ tail/ YEAR

AIRSIDE WATCH

Radar data at work

Radar data

- ✤ From primary and secondary Radars
- ✤ Radius of 60 km
- ✤ Sampling from 2 Hz and 10 Hz
- ✤ Available parameters:
 - ✤ Position
 - ✤ Speed
 - ✤ Date and time
 - ➤ Altitude
 - ✤ Callsign, aircraft type, origin and destination

Help

~

×

Improvement of capacity and performances

- ✤ Search engine for the trajectories
- ✤ Visualization and KPIs
- ✤ Modules
 - ✤ Safety
 - ✤ Capacity
 - ✤ Environement

Emisions and air quality

- ✤ Realtime emision reporting
- ✤ Realtime dispersion reporting
- ✤ Speed and acceleration indicators
- Individual aircraft and airline analysis
- ✤ Air quality modelling

Emisions and air quality

- ✤ Realtime emision reporting
- ✤ Realtime dispersion reporting
- ✤ Speed and acceleration indicators
- ➤ Individual aircraft and airline analysis
- ✤ Air quality modelling

- ✤ Correlation wih congestions
- ✤ Modifications of the routes
- ✤ Taxiing best practices

Exemple of emissions 1 : 2 trajectories (1 take-off + 1 landing)

- Total emissions of CO2 : 449.63 kg
- Total emissions of NOx : 617.77 g

Exemple 2 : 5 trajectories

- Total emissions of CO2 : 1901 kg
- Total emissions of NOx : 2790 g

Exemple of dispersions (1st july 2016)

Merci pour votre attention !

contact@safety-line.fr

Confidential