

Towards the Automation of Data Analysis for Large Scale Relational Data

Marc Boullé, Orange Labs September 25, 2020

Orange Labs

Data Mining in Orange

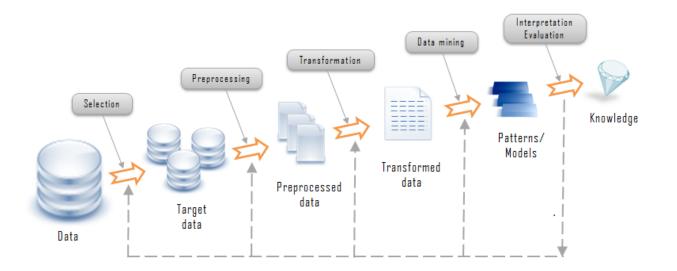
Example of use case

Marketing campaigns

- Objective: scoring
 - churn, appetency, up-selling...
- Many domains
 - Marketing, Text mining, Web mining, Traffic classification, Sociology, Ergonomics...
- Millions of instances
- Multiple tables source data
 - Customer contracts
 - Call detail records (billions)
 - Multi-channel customer support
 - External data
 - ...
- Train sample
 - 100 000 instances
 - 10 000 variables (based on expertise)
 - Heavily unbalanced
 - Missing values
 - Thousands of categorical values
 - ...
- Challenge: industrial scale
 - Hundred of scores every month

Data Mining in Orange

How to efficiently apply data mining techniques in an industrial context?

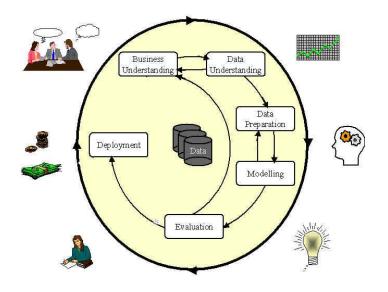


Towards an effective automation of data mining

Evaluation criterions

- Genericity
- No parameter
- Robustness
- Accuracy
- Understandability
- Scalability

Lift the brakes to the dissemination With a high-quality tool



Automatic data preparation

Multi-tables data mining

Automatic variable construction

Conclusion and future work

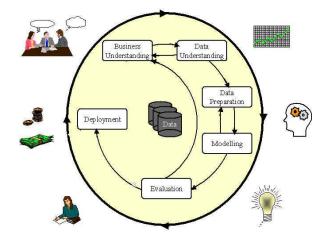
Context

Statistical learning

- Objective: train a model
 - Classification: the output variable is categorical
 - Regression: the output variable is numerical
 - Clustering: no output variable

Data preparation

- Variable selection
- Search for a data representation
- Data preparation is critical
 - 80% of the process time
 - Requires skilled data analysts



Single-table datasets instances x variables

Age	Education	Education Num	Marital status	Occupation	Race	Sex	Hours Per week	Native country	 Class
39	Bachelors	13	Never-married	Adm-clerical	White	Male	40	United-States	 less
50	Bachelors	13	Married-civ-spouse	Exec-managerial	White	Male	13	United-States	 less
38	HS-grad	9	Divorced	Handlers-cleaners	White	Male	40	United-States	 less
53	11th	7	Married-civ-spouse	Handlers-cleaners	Black	Male	40	United-States	 less
28	Bachelors	13	Married-civ-spouse	Prof-specialty	Black	Female	40	Cuba	 less
37	Masters	14	Married-civ-spouse	Exec-managerial	White	Female	40	United-States	 less
49	9th	5	Married-spouse-absent	Other-service	Black	Female	16	Jamaica	 less
52	HS-grad	9	Married-civ-spouse	Exec-managerial	White	Male	45	United-States	 more
31	Masters	14	Never-married	Prof-specialty	White	Female	50	United-States	 more
42	Bachelors	13	Married-civ-spouse	Exec-managerial	White	Male	40	United-States	 more
37	Some-college	10	Married-civ-spouse	Exec-managerial	Black	Male	80	United-States	 more
30	Bachelors	13	Married-civ-spouse	Prof-specialty	Asian	Male	40	India	 more
23	Bachelors	13	Never-married	Adm-clerical	White	Female	30	United-States	 less
32	Assoc-acdm	12	Never-married	Sales	Black	Male	50	United-States	 less

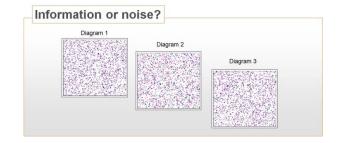
Proposed approach: data grid models

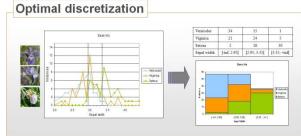
Objective

- Evaluate the informativeness of variables
- Data grid models for non parametric density estimation
 - Discretization of numerical variables
 - Value grouping of categorical variables
 - Data grid are the cross-product of the univariate partitions, with a piecewise constant density estimation in each cell of the grid

Modeling approach: MODL

- Bayesian approach for model selection
 - Minimum Description Length
- Efficient optimization algorithms



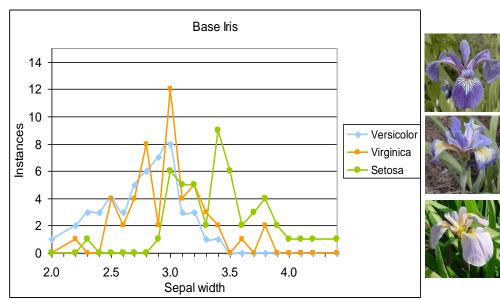


Numerical variables

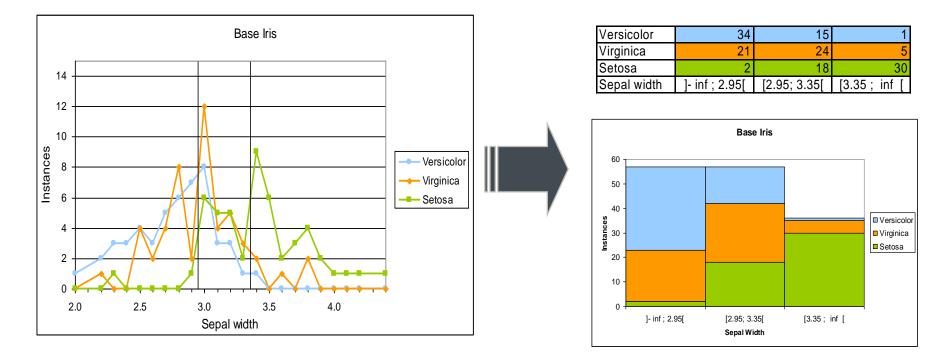
Univariate analysis using supervised discretization

Discretization:

- Split of a numerical domain into a set of intervals
- Main issues:
 - Accuracy:
 - Good fit of the data
 - Robustness:
 - Good generalization



Supervised discretization Model for conditional density estimation



How to select the best model?

Formalization

Definition: A discretization model is defined by:

- the number of input intervals,
- the partition of the input variable into intervals,
- the distribution of the output values in each interval.

Notations:

- N: number of instances
- J: number of classes
- I: number of intervals
- N_i: number of instances in the interval i
- N_{ij} : number of instances in the interval *i* for class *j*

Bayesian approach for model selection

Best model: the most probable model given the data

• Maximize
$$P(M | D) = \frac{P(M)P(D | M)}{P(D)}$$

• Using a decomposition of the model parameters $P(M)P(D|M) = P(I)P(\{N_i\}|I)P(\{N_{ij}\}|I,\{N_i\})P(D|M)$

- Assuming independence of the output distributions in each interval $P(M)P(D|M) = P(I)P(\{N_{i.}\}|I)\prod_{i=1}^{I}P(\{N_{ij}\}|I,\{N_{i.}\})\prod_{i=1}^{I}P(D_{i}|M)$
- We now need to evaluate the prior distribution of the model parameters

Prior distribution of the models

Definition: We define the hierarchical prior as follows:

- the number of intervals is uniformly distributed between 1 et *N*,
- for a given number of intervals *I*, every set of *I* interval bounds are equiprobable,
- for a given interval, every distribution of the output values are equiprobable,
- the distributions of the output values on each input interval are independent from each other.
- Hierarchical prior, uniformly distributed at each stage of the hierarchy

Optimal evaluation criterion MODL

Theorem: A discretization model distributed according the hierarchical prior is Bayes optimal for a given set of instances if the following criterion is minimal:

$$\log(N) + \log\binom{N+I-1}{I-1} + \sum_{i=1}^{I} \log\binom{N_{i.}+J-1}{J-1} + \sum_{i=1}^{I} \log(N_{i.}!/N_{i1}!N_{i2}!...N_{iJ}!)$$

N: number of instances J: number of classes *I*: number of intervals N_{i} : number of instances in the interval *i* N_{ii} : number of instances in the interval *i* for class *j*

1° term: choice of the number of intervals

prior

- 2° term: choice of the bounds of the intervals
- 3° term: choice of the output distribution Y in each interval
- 4° term: likelihood of the data given the model

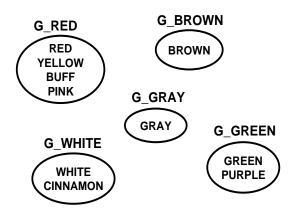
Combinatorial heuristics to retrieve the best model in O(N log N)

likelihood

Categorical variables Univariate analysis using value grouping

Cap color	EDIBLE	POISONOUS	Frequency
BROWN	55.2%	44.8%	1610
GRAY	61.2%	38.8%	1458
RED	40.2%	59.8%	1066
YELLOW	38.4%	61.6%	743
WHITE	69.9%	30.1%	711
BUFF	30.3%	69.7%	122
PINK	39.6%	60.4%	101
CINNAMON	71.0%	29.0%	31
GREEN	100.0%	0.0%	13
PURPLE	100.0%	0.0%	10

Cap color	EDIBLE	POISONOUS	Frequency
G_RED	38.9%	61.1%	2032
G_BROWN	55.2%	44.8%	1610
G_GRAY	61.2%	38.8%	1458
G_WHITE	69.9%	30.1%	742
G_GREEN	100.0%	0.0%	23



MODL approach

Density estimation using data grids

- Discretization of numerical variables
- Value grouping of categorical variables
- Density estimation based on data grid models, with piecewise constant density per cell
- Strong expressiveness

Model selection

- Bayesian approach for model selection
- Hierarchical prior for the model parameters
- Exact analytical criterion

Optimization algorithm

- Combinatorial algorithms
- Heuristic exploiting the sparseness of the data grids and the additivity of the criterion
- Efficient implementation

Genericity of the data grid models

	Univariate	Bivariate	Multivariate
Classification Y categorical	P(Y <i>X</i>)	P(Y X ₁ , X ₂)	P(Y X ₁ , X ₂ ,, X _K)
Regression Ynumerical	P(Y <i>X</i>)	P(Y X ₁ , X ₂)	P(Y X ₁ , X ₂ ,, X _K)
Clustering	_	P(Y ₁ , Y ₂)	P(Y ₁ , Y ₂ ,, Y _K)

K-coclustering of variables Joint density estimation: $P(Y_1, Y_2, ..., Y_k)$

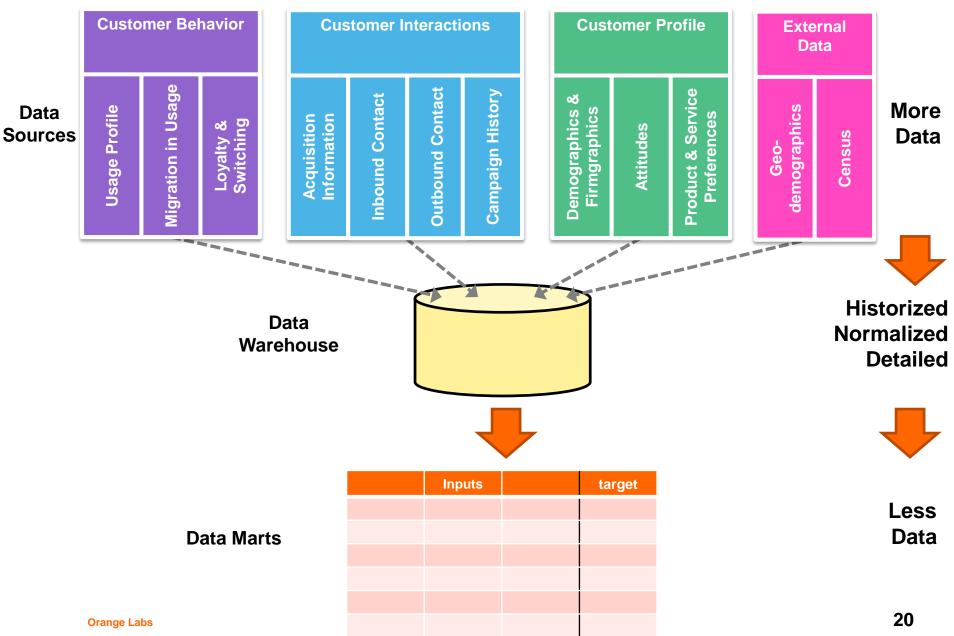
- Bi-clustering: P(Y₁, Y₂)
 - Text clustering
 - Y₁: texts, Y₂: words
 - Graph clustering
 - Y₁: source nodes, Y₂: target nodes
 - Web mining
 - Web usage mining (logs)
 - Web structure mining
 - Market basket analysis
 - Y₁: customers, Y₂: products
 - Spatial data
 - ex: geographical distribution of industries
 - Y₁: code NAF, Y₂: code Iris

- Tri-clustrering: P(Y₁, Y_{2, Y3})
 - Temporal graph clustering
 - Y₁: source nodes, Y₂: target nodes
 - Y₃: timestamp
 - Curve clustering, time series
 - Y₁: curve ID
 - (Y₂, Y₃): (X, Y) curve point
 - Spatio-temporal data
 - ex: Rental bike service
 - ex: Call detail records

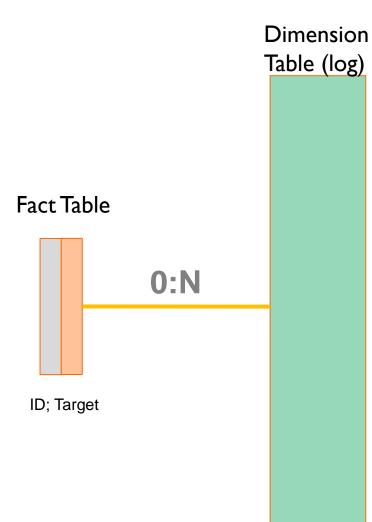
Schedule

- Automatic data preparation
- Multi-tables data mining
- Automatic variable construction
- Conclusion and future work

Where does data come from?

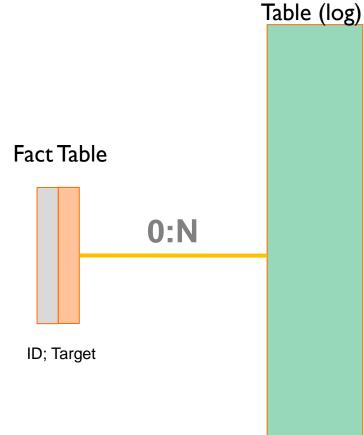


Big Data = relational data!



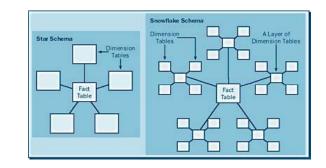
Big Data = relational data!

Dimension

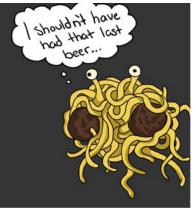


Generalization

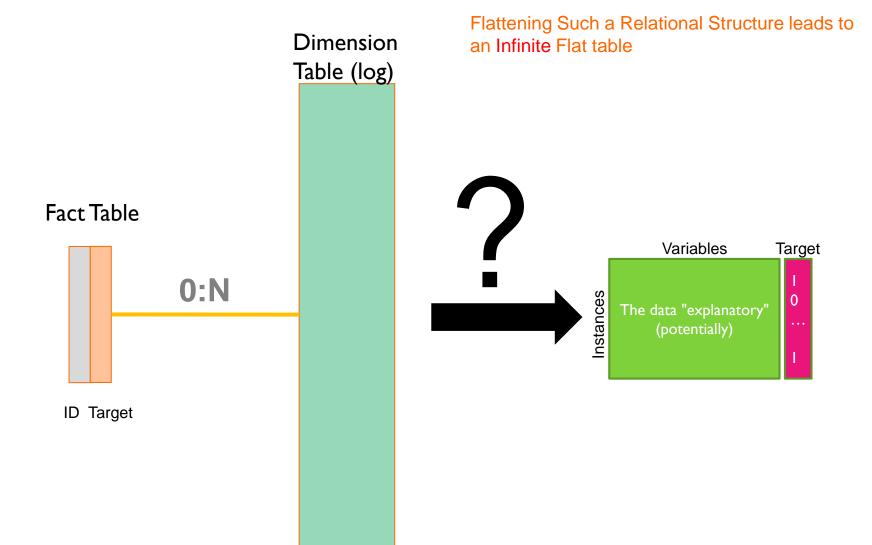
Star Schema Snowflake Schema



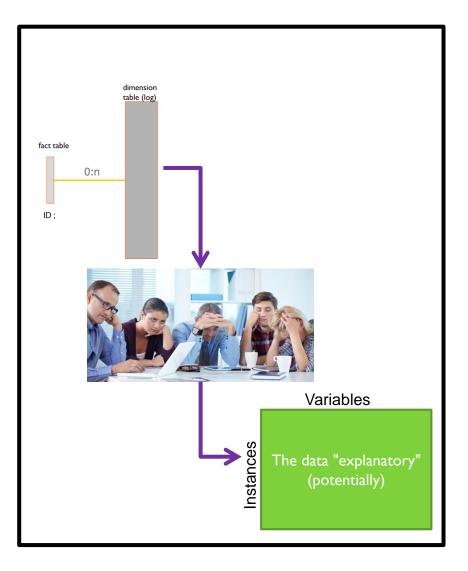
More complex structures are not considered (Yet):



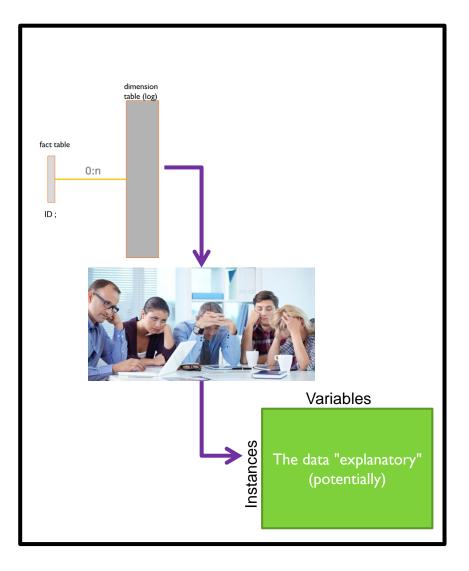
Big Data = relational data!



Creation of aggregates



Creation of aggregates



- Long
 - Time expensive process to get a flat table usable for data analysis
- Costly
 - Expert knowledge necessary to constructed new variables
- Risky
 - Risk of missing informative variables
 - Risk of constructing and selecting irrelevant variables
- Data-mart specified once for all from business knowledge from a <u>History</u> …
- ... and it is hoped valid for a whole range of <u>Future</u> problems
- (a little caricature, the specification of the data mart evolves in the course of the time but always a posteriori)

Schedule

Automatic data preparation

Multi-tables data mining

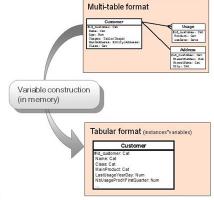
Automatic variable construction

Conclusion and future work

Automatic variable construction

Search for an efficient data representation

- Context: supervised analysis
 - especially, in the multi-tables settings
- Data preparation:
 - automatic variable selection
 - next step: automatic variable construction (propositionalisation)
- Objective:
 - Explore numerous data representations using variable construction
 - Select the best representation
- Challenges
 - The number of constructed variables is infinite
 - it is a subset of all computer programs
 - How to specify domain knowledge in order to control the space of constructed variables?
 - How to efficiently exploit this domain knowledge in order to reach the objective?
 - Explore a very large search space
 - Prevent the risk of over-fitting



Schedule

Automatic data preparation

Multi-tables data mining

Automatic variable construction

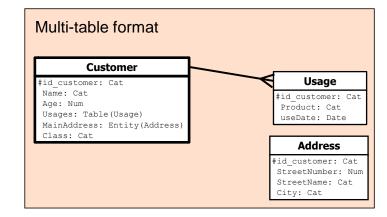
- Specification of domain knowledge
- Evaluation of constructed variables
- Sampling a subset of constructed variables
- Experiments

Conclusion and future work

Specification of data format

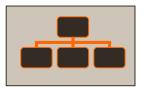
Table

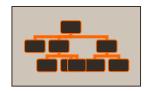
- Two kinds of tables
 - · Root table: statistical unit of the studied problem
 - · Secondary table: sub-part of the statistical unit
- Variables of simple type
 - Numerical (Num)
 - Categorical (Cat)
- Variables of advanced type
 - Date, Time, Timestamp...
- Variables of relation type
 - Simple composition: sub-entity with 0-1 relation (Entity)
 - Multiple composition: sub-entity with 0-n relation (Table)

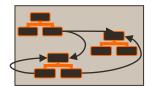


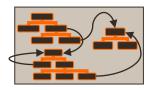
Multi-table schemas

- Mono-table
- Multi-tables
 - Star schema
 - Snowflake schema
 - External data
 - Multiple snowflake schema

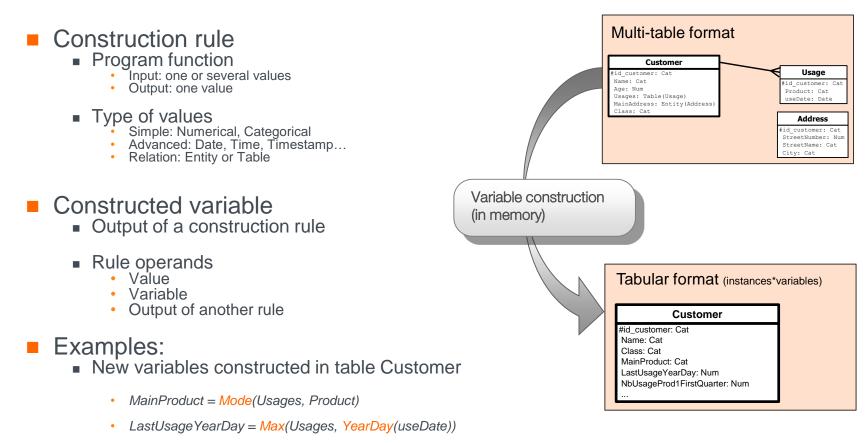








Specification of a variable construction language



• NbUsageProd1FirstQuarter = Count(Selection(Usages, YearDay(useDate) in [1;90] and Product = "Prod1"))

• ...

Variable construction language List of construction rules

Name Return type Operands		Operands	Label		
Count Num Table		Table	Number of records in a table		
CountDistinct	Num	Table, Cat	Number of distinct values		
Mode Cat Table, Cat I		Table, Cat	Most frequent value		
Mean Num Table, Num I		Table, Num	Mean value		
StdDev	Num	Table, Num	Standard deviation		
Median	Num	Table, Num	Median value		
Min	Num	Table, Num	Min value		
Max	Num	Table, Num	Max value		
Sum Num Table, Num		Table, Num	Sum of values		
Selection Table Table, (Cat, Num)		Table, (Cat, Num)	Selection from a table given a selection criterion		
YearDay Num Date		Date	Day in year		
WeekDay Num Date		Date	Day in week		
DecimalTime Num Time		Time	Decimal hour in day		
•••					

Schedule

Automatic data preparation

Multi-tables data mining

Automatic variable construction

- Specification of domain knowledge
- Evaluation of constructed variables
- Sampling a subset of constructed variables
- Experiments

Conclusion and future work

MODL approach: evaluation of one variable

Definition of modeling space M_c of constructed variables

- Exploit the domain knowledge
- Exploit the multi-table format of the input data
- A constructed variable X is a formula
 - it is a « small » computer program
- Definition of a prior distribution on all constructed variables $L(M_{c}(X)) = -\log p(M_{c}(X))$

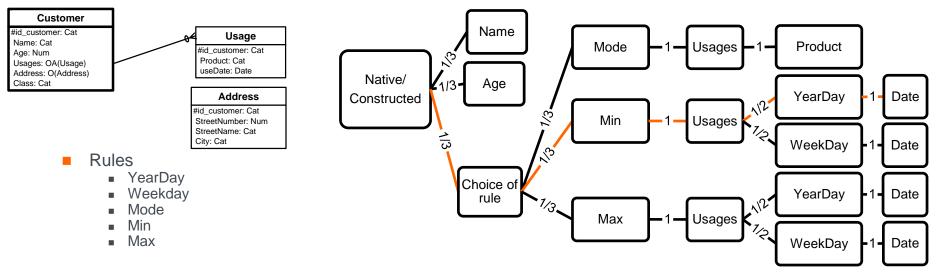
Evaluation criterion of a constructed variable

$$c(X) = L(M_{C}(X)) + L(M_{P}(X)) + L(D_{Y} | M_{P}(X), D_{X})$$

construction prior preprocessing likelihood

Penalization of complex constructed variables

Prior distribution on all constructed variables Example



Hierarchy of Multinomial Distributions with potentially Infinite Depth (HMDID) prior

- Cost of Name $L(M_C(X)) = \log(3)$
- Choice of variable : log(3)

Cost of Min(Usages, YearDay(Date))

 $L(M_C(X)) = \log(3) + \log(3) + \log(1) + \log(1) + \log(2) + \log(1)$

- Choice of constructing a variable: log(3)
- Choice of rule Min: log(3)
- Choice of first operand (Usages) of Min: log(1)
- Choice of constructing a variable for second operand of Min: log(1)
- Choice of rule YearDay: log(2)
- Choice of operand of YearDay (Date): log(1)

Schedule

Automatic data preparation

Multi-tables data mining

Automatic variable construction

- Specification of domain knowledge
- Evaluation of constructed variables
- Sampling a subset of constructed variables
- Experiments

Conclusion and future work

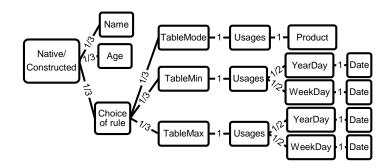
Exploitation of domain knowledge

How to draw a sample from the space of variable construction?

- Objective: draw a sample of *K* variables
 - At this step, the problem of selecting the informative variables is ignored
- Principle
 - Draw the variables one by one according to the HMDID prior

Naive algorithm: successive random draws

- Input: K {Number of draws}
- Sortie: X={X}, |X|≤K {Sample of constructed variables}
 - 1: X=Ø
 - 2: for k = 1 to K do
 - 3: Draw X according to HMDID prior
 - 4: Add X into X
 - 5: end for



Exploitation of domain knowledge

The naive algorithm is neither efficient not computable

The naive algorithm is not efficient

- Most draws do not produce new variables
- Few constructed variables are drawn in case of numerous native variables

The naive algorithm is not computable

- Example:
 - Variable v de type Num, rule f(Num, Num) -> Num
 - Example: f = Sum(., .)
 - Family of constructed variables

Size	Example	Coding	Coding length	Prior	Number of variables
1	Х	0	1	2-1	1
2	f(x,x)	100	3	2-3	1
3	f(f(x,x), x)	11000	5	2-5	2
4	f(f(x,f(x,x)), x)	1101000	7	2-7	5
5	f(f(x, f(x, x)), f(x, x))	110100100	9	2-9	14
n			2n-1	2-(2n-1)	C(n-1)

- Catalan number C_n
 - C_n is the number of different ways n + 1 factors can be completely parenthesized
 - C_n is also the number of full binary trees with n+1 leaves
- Expectation of the size of formula: infinite

$$E(s(X)) = \sum_{n=1}^{\infty} n 2^{-(2n-1)} C_{n-1} = \infty$$

Exploitation of domain knowledge

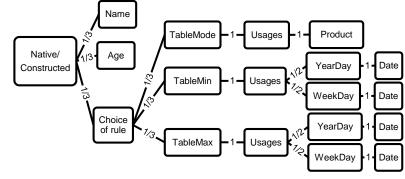
Draw many constructed variables simultaneously

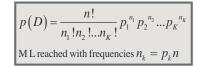
- Principle
 - Draw directly a sample of variables according to prior HMDID
 - Exploit the multinomial maximum likelihood of the whole sample

Whole sample algorithm: simultaneous random draws

- Input: K {Number of draws}
- Output: X={X}, |X|≤K {Sample of constructed variables}
 - 1: X=Ø
 - 2: Start from root node of hierarchy of HMDID prior
 - 3: Compute number of draws K_i per child node of the prior (native variable, rule, operand...)
 - 4: for all child node in current node of the prior do
 - 5: if leaf node of the prior (constructed variable with complete formula) then
 - 6: Add X into X
 - 7: else
 - 8: Propagate construction recursively by distributing the K_i draws on each child node according to the multinomial distribution
 - 9: end if
 - 10: end for

The whole sample algorithm is both efficient and computable





Schedule

Automatic data preparation

Multi-tables data mining

Automatic variable construction

- Specification of domain knowledge
- Evaluation of constructed variables
- Sampling a subset of constructed variables
- Experiments

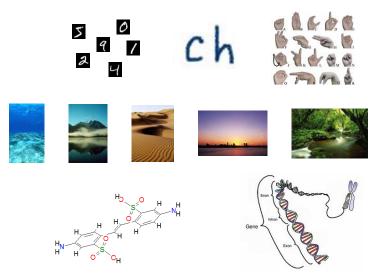
Conclusion and future work

Benchmark

Datasets

14 benchmark multi-tables datasets

- Various domains
 - Handwritten digit
 - Pen tip trajectory character
 - Australian sign language
 - Image
 - Speaker recognition
 - Molecular chemistry
 - Genomics
 - ...
- Various sizes and complexity
 - 100 to 5000 instances
 - 500 to 5000000 records in secondary tables
 - Numerical and categorical variables
 - 2 to 96 classes
 - Unbalanced class distribution



Dataset	Instances	Records	Cat. var	Num. var	Classes	Maj.
Auslan	2565	146949	1	23	96	0.011
CharacterTrajectories	2858	487277	1	4	20	0.065
Diterpenes	1503	30060	2	1	23	0.298
JapaneseVowels	640	9961	1	13	9	0.184
MimlDesert	2000	18000	1	15	2	0.796
MimlMountains	2000	18000	1	15	2	0.771
MimlSea	2000	18000	1	15	2	0.71
MimlSunset	2000	18000	1	15	2	0.768
MimlTrees	2000	18000	1	15	2	0.72
Musk1	92	476	1	166	2	0.511
Musk2	102	6598	1	166	2	0.618
Mutagenesis	188	10136	3	4	2	0.665
OptDigits	5620	5754880	1	3	10	0.102
SpliceJunction	3178	191400	2	1	3	0.521

Benchmark results Synthesis

Our method: MODL

- Genericity
 - Useful in a large variety of domains
 - Also applied to classification of time series
- Accuracy
 - Underfit in tiny datasets (Musk)
 - Performance increases with the number of variables
 - Best accuracy overall
- Automation
 - One single parameter: number of features
- Scalability
 - Several orders of magnitude faster that other accurate methods

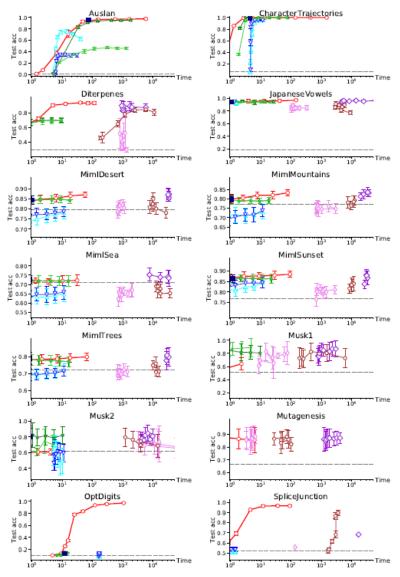


 Fig. 11 Test accuracy versus training time per dataset.

 MODL: \bigcirc red
 RELAGGS: \blacksquare navy
 Cardinal.: \bullet lime
 Quantil.: \star green

 1BC: \triangle cyan
 1BC2: ∇ blue
 NFOIL: \bigcirc brown
 Tilde: \diamondsuit pink
 FORF: \diamondsuit violet

Benchmark: robustness

Protocol

- Random shuffle of class values in each dataset
- Experiments repeated in 10 cross-validation
 - 10000 constructed variables per dataset in each fold
 - 1.4 million of variables evaluated overall

Results

- With construction regularization
 - Not one single wrongly selected variable, among the 1.4 million
 - Highly robust approach

Use cases in Orange

Experiments on large datasets

- 100 000 customers
 - up to millions in main table
- 50 millions call detail records
 - up to billions in secondary tables
 - up to hundreds of GB
- Up to 100 000 automatically constructed variables

Results

- Genericiy
- Parameter-free
 - · Rely on domain knowledge description: multi-table specification and choice of construction rules
- Reliability
- Accuracy
- Interpretability:
 - Constructed variables may be numerous, redundant and some of them complex
- Efficicency
- Use cases and methodology: need to be explored
 - Automatic evaluation of additional data sources
 - Fast automatic solution to many data mining problems
 - Help to suggest new variables to construct
 - • • •

Schedule

Automatic data preparation

Multi-tables data mining

Automatic variable construction

Conclusion and future work

Summary

Variable selection using data grid models

- Discretization/value grouping
- Conditional/joint density estimation
- Specification of domain knowledge
 - Multi-table format, advanced data types (Date, Time...)
 - Construction variable language

Specification of a prior distribution on the space of variable construction

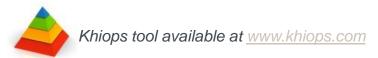
• Hierarchy of Multinomial Distributions with potentially Infinite Depth

Sampling algorithm on this infinite variable construction space

Concept of maximum likelihood of a whole sample of variables

Experiments with accurate results, on many relational data mining domains

Now widely used on large Orange datasets: effective automation of variable construction



Future work

Future work: numerous open problems

- Design of more parsimonious prior
- Extension of the specification of domain knowledge
- Large scale parallelization for exploration of the space of variable construction
- Sampling constructed variable according to their posterior (*vs.* prior) distribution
- Any time variable construction, jointly with multivariate classifier training

• • • •

thank you for your attention!

References

Data preparation

- M. Boullé. A Bayes optimal approach for partitioning the values of categorical attributes. Journal of Machine Learning Research, 6:1431-1452, 2005
- M. Boullé. MODL: a Bayes optimal discretization method for continuous attributes. Machine Learning, 65(1):131-165, 2006
- M. Boullé. Data grid models for preparation and modeling in supervised learning. In Hands-On Pattern Recognition: Challenges in Machine Learning, volume 1, I. Guyon, G. Cawley, G. Dror, A. Saffari (eds.), pp. 99-130, Microtome Publishing, 2011

Modeling

 M. Boullé. Compression-Based Averaging of Selective Naive Bayes Classifiers. Journal of Machine Learning Research, 8:1659-1685, 2007

Feature construction

- M. Boullé. Towards Automatic Feature Construction for Supervised Classification. In ECML/PKDD 2014, Pages 181-196, 2014
- M. Boullé, C. Charnay, N. Lachiche. A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data. Machine Learning, 108(2):229-266, 2019.